ODP Leg 204 - Hole 1244E

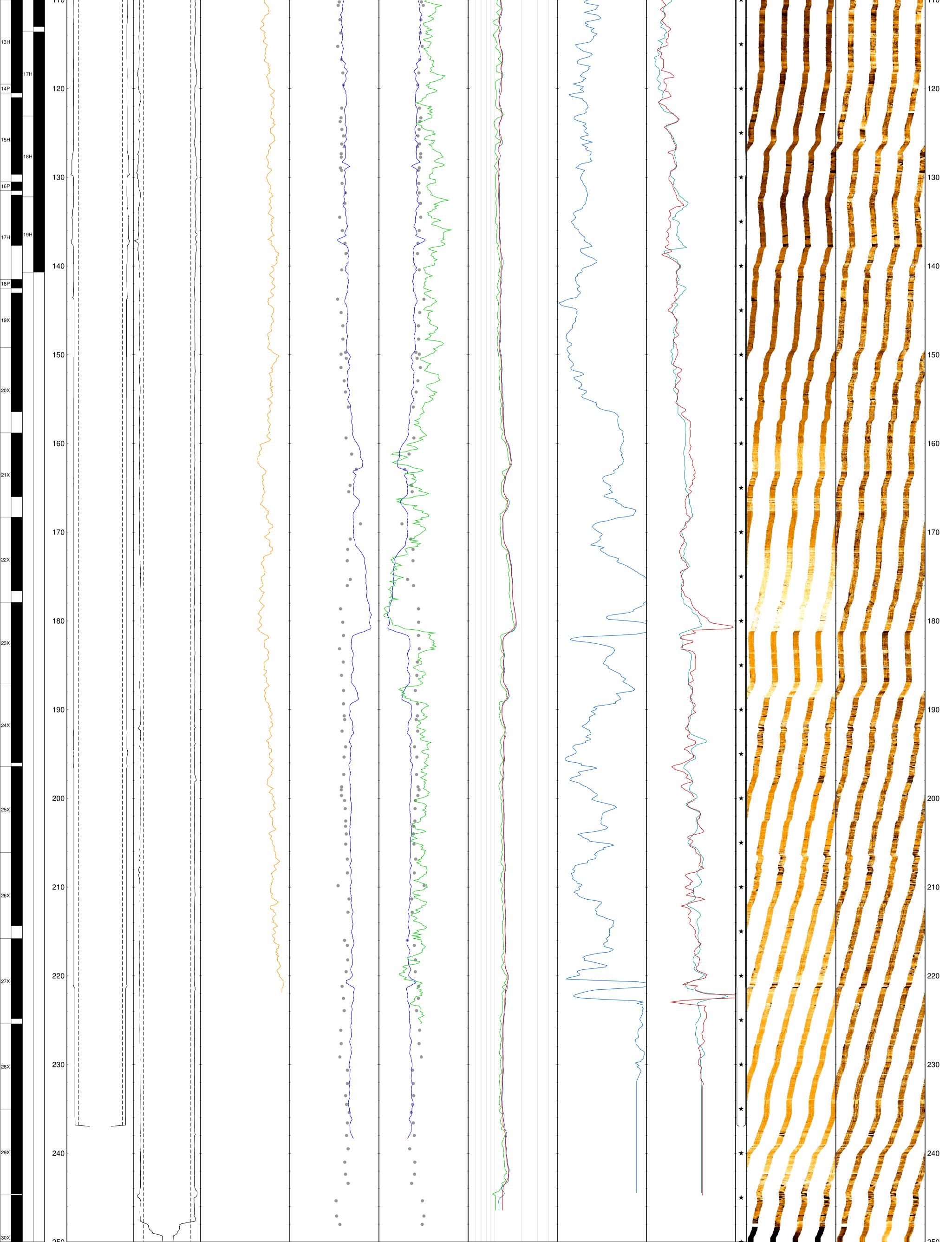
The following figures show the main logs recorded in Hole 1244E during ODP Leg 204. All the data displayed can be downloaded from the ODP logging database: http://brg.ldeo.columbia.edu/data/odp/leg204/1244E

The figures were generated automatically, including the estimation of ranges used for the data, and regardless of their quality. To get a more complete assessment of the quality of the data and a description of the processing, check the processing documentation:

http://brg.ldeo.columbia.edu/data/odp/leg204/1244E/documents/204-1244E_info-std.html

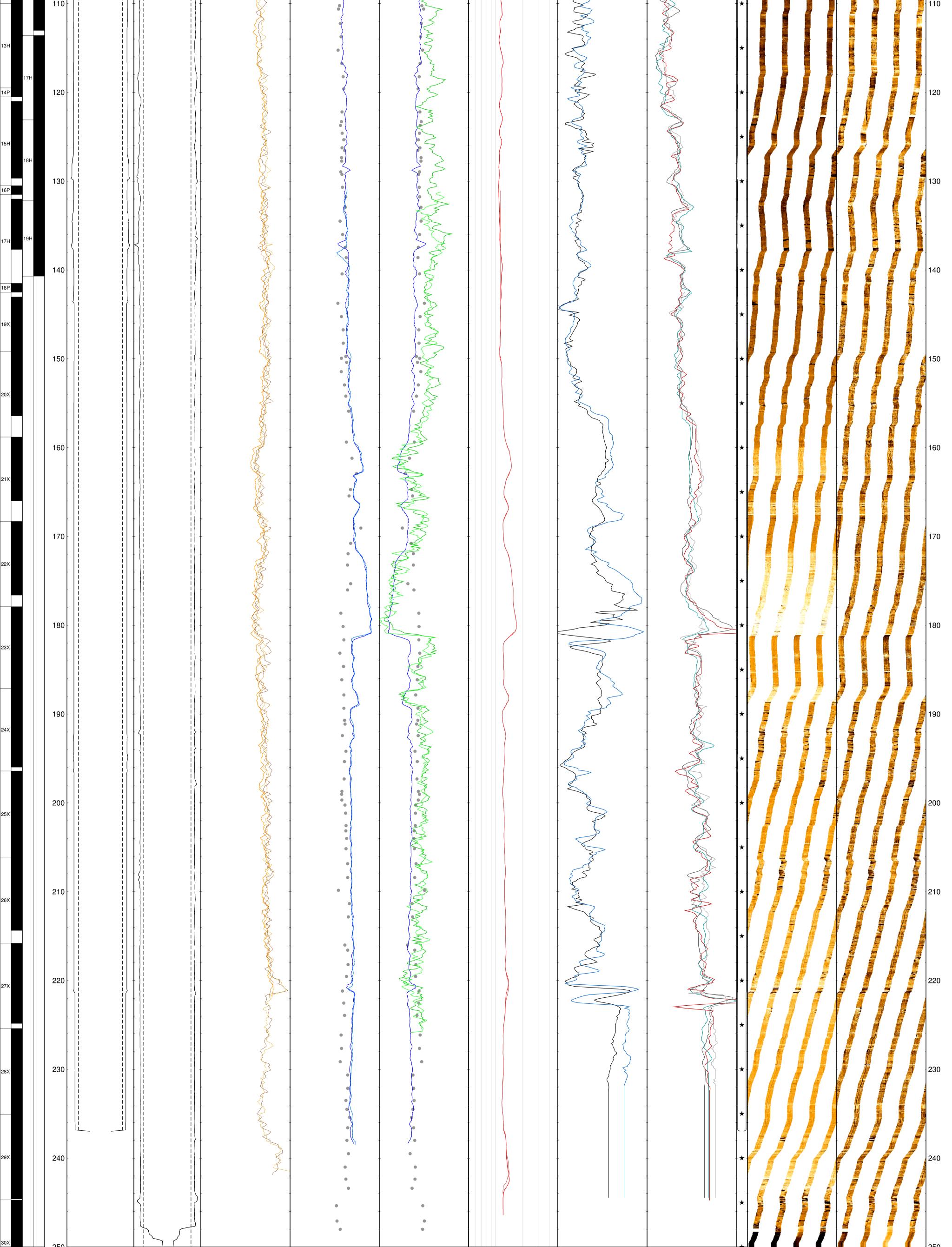
Each measurement was recorded during several passes, acquired while lowering the tool string down the hole or while pulling it uphole.

The first figure displays the data over the longest pass for each type of measurement. In this figure, the resistivity curves show the measurements made by the DIT at several depths of investigation (shallow, deep,...) during the longest pass.


The second figure combines all the data from all passes for each measurement. The resistivity curves in this figure are for the deepest depth of investigation available from the tool(s) used.

The labels for each curve are derived from the name of the file in the database used for the figure.

The core data shown were collected from holes at the same site.


Longest logging passes in Hole 1244E - ODP Leg 204

cores ry cores	nbsf)	Hole Size	Hole Size	Gamma Ray	Density	Porosity	Resistivity	Compressional velocity	Shear velocity	÷.	atic FMS	Dynam	
1244C cores Recovery 1244E cores Recovery	Depth (mbsf)	LCAL (HLDS)	C1,C2 (FMS)	HNGS [main]	HLDT [main]	APS [main]	IDPH-deep [main]	pass 2				stive conductive	resistive
	60	0 Inches 15 < Bit size >	0 Inches 14 < Bit size >	0 gAPI 70) 1.1 g/cm3 2.2 3 • core data • • •	30 % 90 core data . from density •	0.5 ohm.m 5 SFLU-shallow [main] IMPH-medium [main]		1750 200 m/s 70 VS1 [pass 1]		<u>S</u> W	<u>NNES</u>	<u>3 W N</u> ≝ . 6
8H 10H 11P	70												
9H 12H	80												٤
10H 13H	90					M							g
11H 14H	100					The second secon				*			10
15P 12H 16H	110												11

All logging passes in Hole 1244E - ODP Leg 204

1244C cores Recovery 1244E cores Recovery	Depth (mbsf)	Hole Size	Hole Size C1,C2 (FMS)	Gamma Ray	Density HLDT [main]	Porosity	Resistivity	Compressional velocity	Shear velocity	ttions			ic FMS Dynami			Dept
14C c sover 14E c sover	oth (r _	LCAL (HLDS)				APS [main]	IDPH-deep [main]	pass 2	VS2 [pass 1]		onductive)	resistive o	conductive	resistiv	. ¬
124 Rec 124 Rec	Dep	0 Inches 15		0 gAPI 80 1		% 90) 200 m/s	650 AN	Е	S	W N	N E S	6 W	nbsf) N
8H 10H	60		< Bit size >	HNGS [repeat] SGT [pass 1] SGT [pass 2]	• core data - HLDT [repeat] •	 core data from density APS [repeat] • • • 	IDPH-deep [repeat]		VS1 [pase VS2 [pase VS1 [pase	1]			-			60
11P	70															70
9H 12H	80															80
10H 13H	90															90
11H 14H	100									*						100
15P 12H 16H	110									*						110

