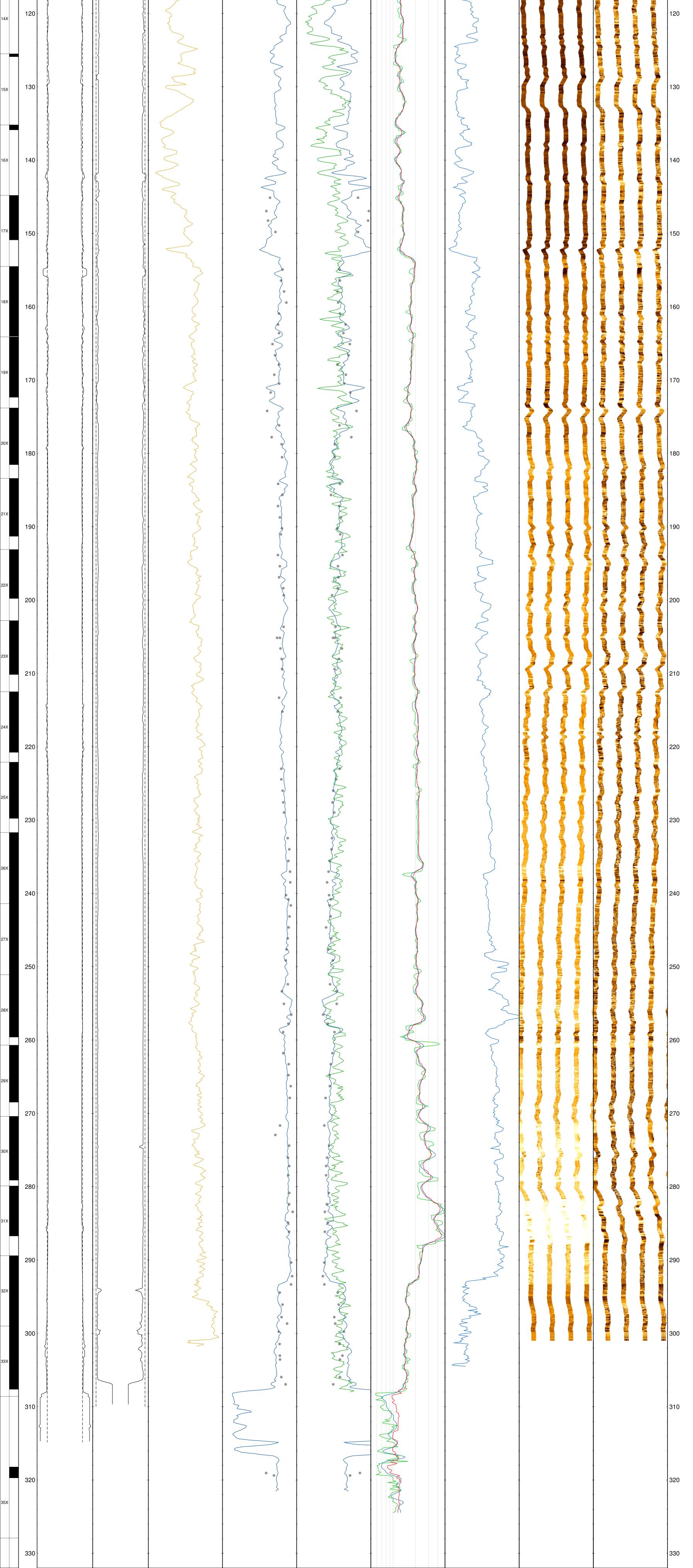
ODP Leg 155 - Hole 936A

The following figures show the main logs recorded in Hole 936A during ODP Leg 155. All the data displayed can be downloaded from the ODP logging database: http://brg.ldeo.columbia.edu/data/odp/leg155/936A

The figures were generated automatically, including the estimation of ranges used for the data, and regardless of their quality. To get a more complete assessment of the quality of the data and a description of the processing, check the processing documentation:

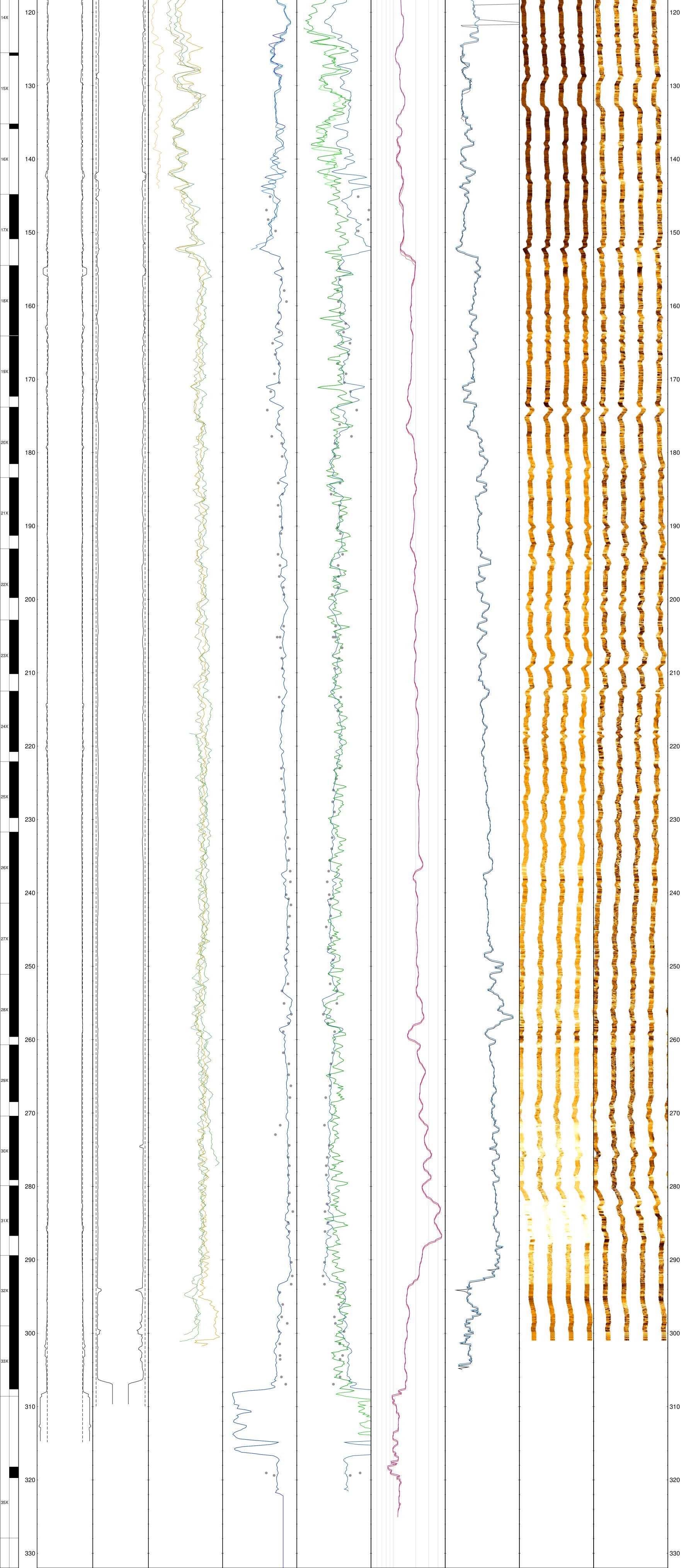
http://brg.ldeo.columbia.edu/data/odp/leg155/936A/documents/155-936A_info-std.html

Each measurement was recorded during several passes, acquired while lowering the tool string down the hole or while pulling it uphole.


The first figure displays the data over the longest pass for each type of measurement. In this figure, the resistivity curves show the measurements made by the DIT at several depths of investigation (shallow, deep,...) during the longest pass.

The second figure combines all the data from all passes for each measurement. The resistivity curves in this figure are for the deepest depth of investigation available from the tool(s) used.

The labels for each curve are derived from the name of the file in the database used for the figure.


The core data shown were collected from holes at the same site.

(mbsf)	Hole Size	Hole Size	Gamma Ray	Density	Porosity	Resistivity	Compressiona velocity	al		tatic FN		-	namic FM	
Depth (mbsf	LCAL (HLDS)	C1,C2 (FMS)	NGT [ditspl]	HLDT [splice]	CNTG [splice]	IDPH-deep [splice]	splice		conductive					
60	0 Inches 18 < Bit size >	0 Inches 13 < Bit size >	50 gAPI 13	30 1.3 g/cm3 2.2 30 Core data	% 60 core data fr om density	0.5 ohm.m 9 SFLU-shallow [splice] IMPH-medium [splice]	5 1600 m/s	2000	<u>N E</u>	S	1 W	<u>NNE</u> -	S	W I
70					M			-						
80								-				-		
90														
100								-						
110								-						

All logging passes in Hole 936A - ODP Leg 155

ery (mbs	Hole Size	Hole Size	Gamma Ray	Density	Porosity	Resistivity	Compressional velocity	Stat conductive	ic FMS	Dyna conductive	amic FMS resistiv
Recovery Depth (mbsf)	LCAL (HLDS) 0 Inches 18	C1,C2 (FMS)	NGT [ditspl] 3 30 gAPI 130	HLDT [splice]	CNTG [splice]	IDPH-deep [splice]	splice		S W N		S W
60	< Bit size >	< Bit size >	3 30 gAPI 130 NGT [cnt] NGT [ditm] NGT [ditr] NGT [fmsm] NGT [fmsr] NGT [gst] NGT [main]	1.3 g/cm3 2.2 Core data HLDT [main] HLDT [repeat]	30 % 60 core data fr om density CNTG [main] CNTG [repeat]	0.5 ohm.m 5 IDPH-deep [main] IDPH-deep [repeat]	1550 m/s 2050 main repeat	<u>IN</u>	<u> </u>	<u>NE</u> .	<u> </u>
70 -		-					and the second sec	-	-	- - -	
80 -								-	-		
90 -	· · ·										
100 -											
110-											

