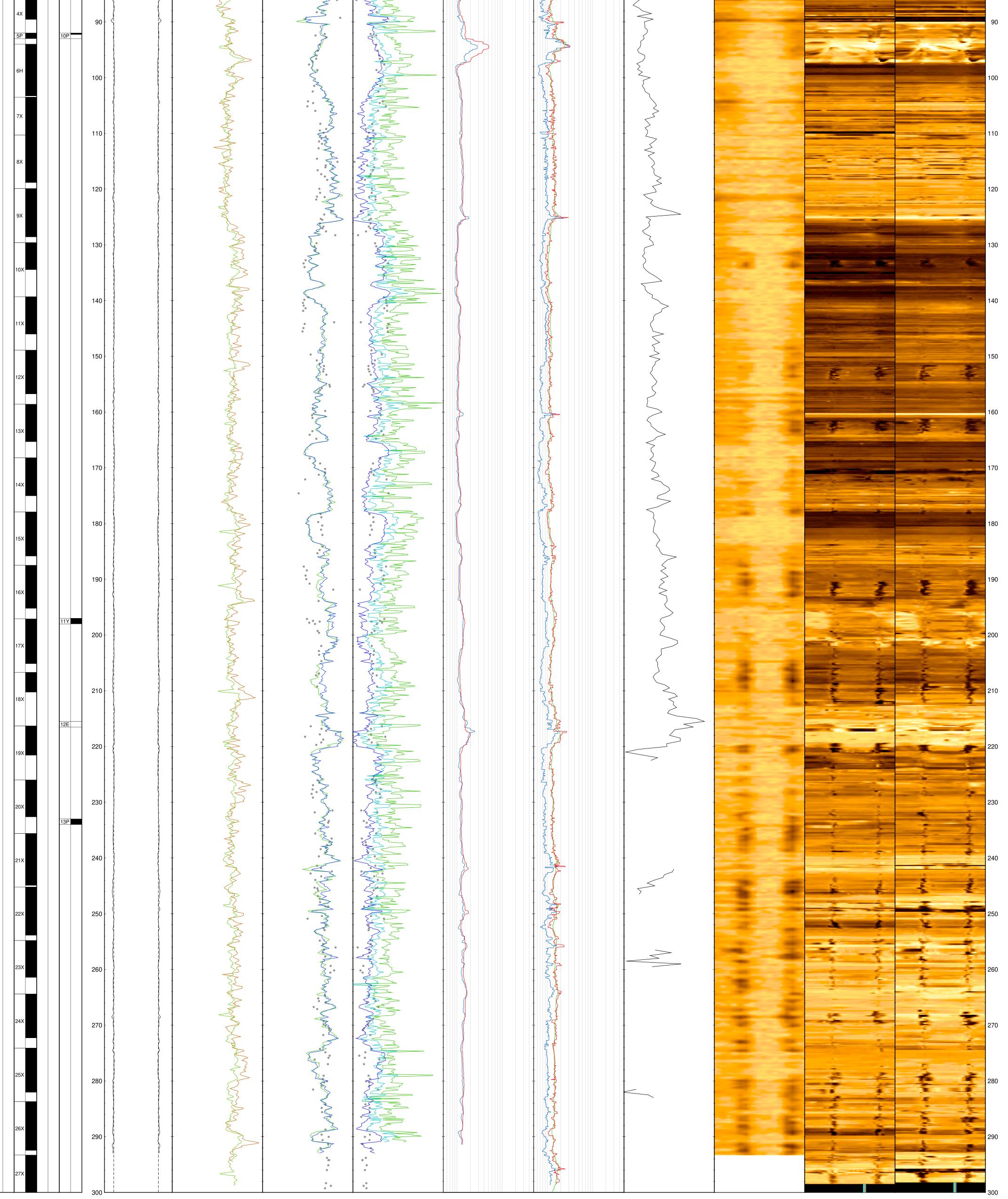
## IODP Expedition 311 - Hole U1328A

The following figure shows the main LWD (Logging While Drilling) logs recorded in Hole U1328A during IODP Expedition 311. All the data displayed can be downloaded from the IODP logging database: http://brg.ldeo.columbia.edu/data/iodp-usio/exp311/U1328A


The figure was generated automatically, including the the estimation of ranges used for the data, and regardless of their quality. To get a more complete assessment of the quality of the data and a description of the processing, check the processing documentation: http://brg.ldeo.columbia.edu/data/iodp-usio/exp311/U1328A/documents/311-U1328A\_info-std-lwd.html

ירבעל

The logs displayed are the main data recorded by each of the tools deployed.

The core data shown were collected from holes at the same site.

| cores<br>iry<br>cores        | ery<br>cores<br>cores<br>cores<br>ry             | mbsf)   | Hole Size       | Gamma Ray                             | Density                                    | Porosity                                   | Resistivity                | Resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vp              | LWD radius | Deep RAB<br>static | Shallow RAB Ce pt |
|------------------------------|--------------------------------------------------|---------|-----------------|---------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|--------------------|-------------------|
| 1328B (<br>7ecove<br>1328C ( | Recove<br>1328D (<br>Recove<br>1328E (<br>Recove | Depth ( | DCAV (EcoScope) | geoVISION<br>gAPI 140                 | IDRO (image derived)                       | BPHI<br>40 % 100                           | A40B (EcoScope)            | BDAV (geoVISION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sonicVISION     |            | NN E S W N         |                   |
| те ш те                      |                                                  |         | Inches 15 0     | gAPI 140<br>EcoScope                  | 1.2 g/cm3 2.2 core data<br>RHOB (EcoScope) | 40 % 100<br>core data<br>TNPH<br>from IDRO | 0.5 ohm.m<br>P16B (EcoScop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1500 m/s 1850 | N E S W    |                    |                   |
| 3X<br>4P<br>5H               | 3Y<br>5P                                         |         |                 |                                       |                                            |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                    |                   |
| 6X<br>7P                     | 6X<br>7Y                                         | 20      |                 | A A A A A A A A A A A A A A A A A A A |                                            |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                    | 20                |
| 8H                           | 8X                                               | 30      |                 | A Martin a                            |                                            |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                    | 30                |
| 9Н                           | 9X                                               | 40 -    |                 | A A A A A A A A A A A A A A A A A A A |                                            |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                    | 40                |
| 10H                          |                                                  | 50 -    |                 |                                       |                                            |                                            |                            | - martin and a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |            |                    | 50                |
| 1+                           |                                                  | 60 -    |                 |                                       |                                            |                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                    | 60                |
| 2+                           |                                                  | 70      |                 |                                       |                                            |                                            |                            | the second                                                                                                                                                                                                                                              |                 |            |                    | 70                |
| 3⊦                           |                                                  | 80 -    |                 | And I I                               |                                            |                                            |                            | - Landren - Land |                 |            |                    | 80                |



## IODP Expedition 311 - Hole U1328C

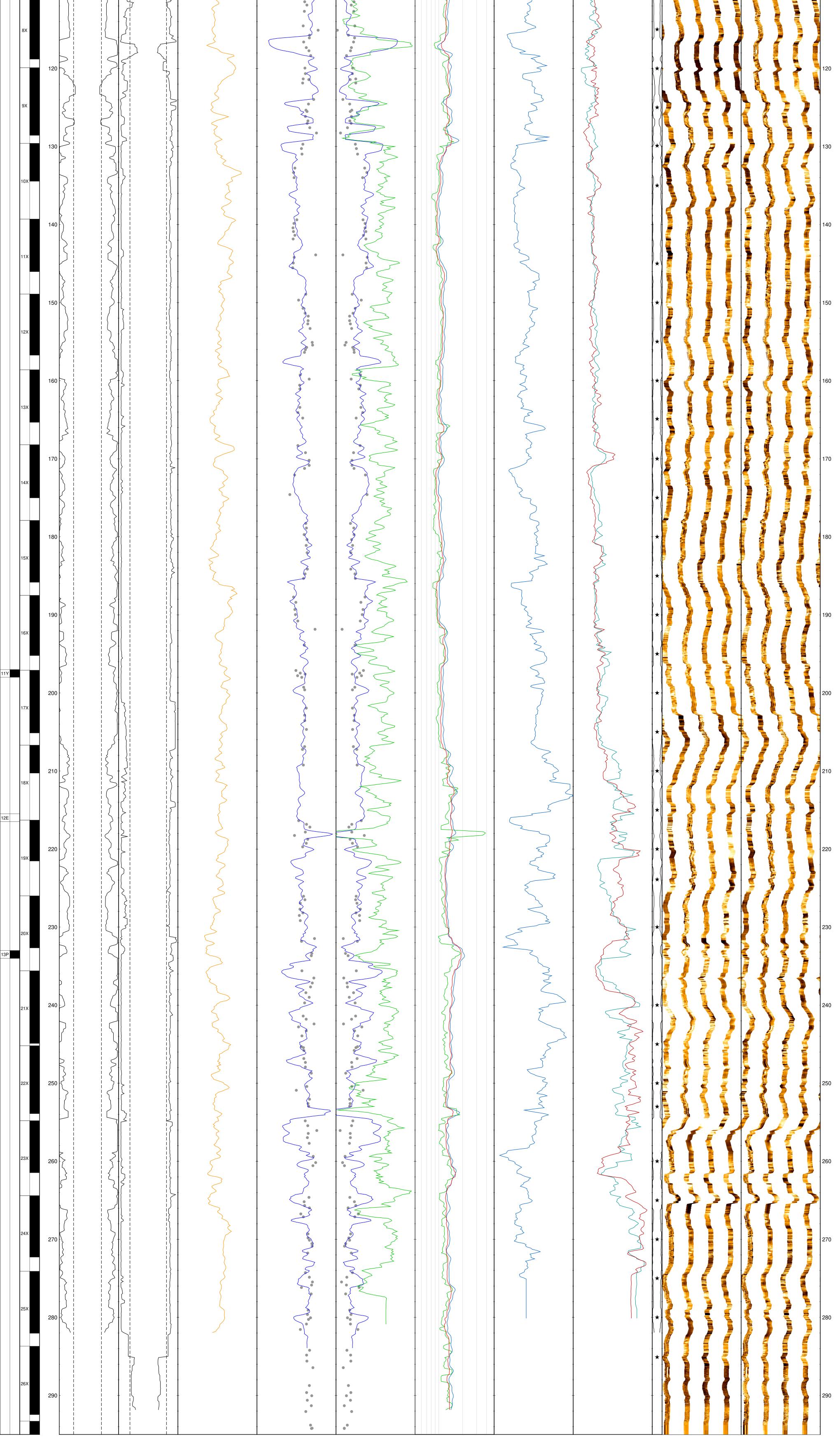
The following figures show the main logs recorded in Hole U1328C during IODP Expedition 311. All the data displayed can be downloaded from the IODP logging database: http://brg.ldeo.columbia.edu/data/iodp-usio/exp311/U1328C

The figures were generated automatically, including the estimation of ranges used for the data, and regardless of their quality. To get a more complete assessment of the quality of the data and a description of the processing, check the processing documentation:

http://brg.ldeo.columbia.edu/data/iodp-usio/exp311/U1328C/documents/311-U1328C\_info-std-wireline.html

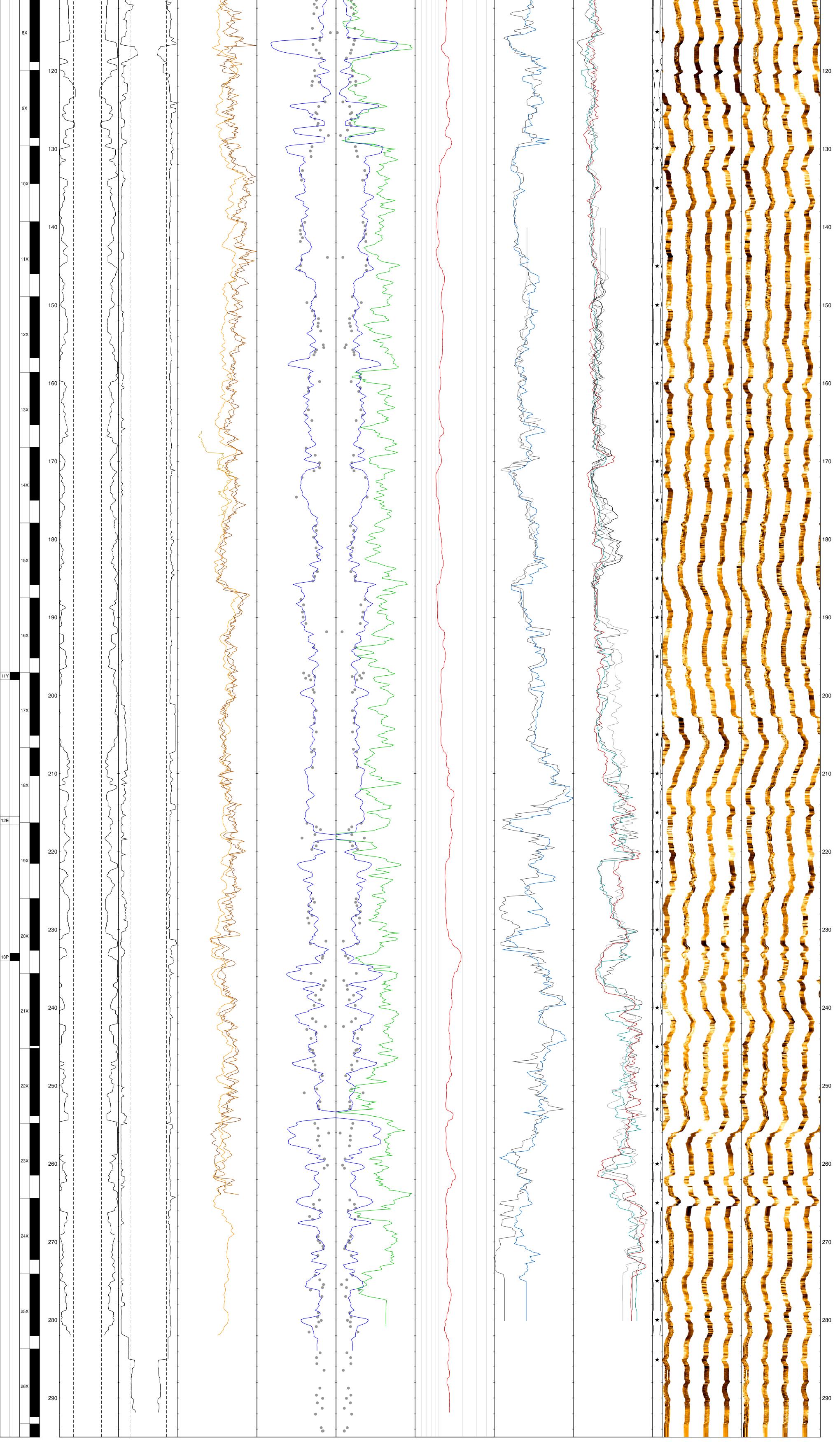
Each measurement was recorded during several passes, acquired while lowering the tool string down the hole or while pulling it uphole.

The first figure displays the data over the longest pass for each type of measurement. In this figure, the resistivity curves show the measurements made by the DIT at several depths of investigation (shallow, deep,...) during the longest pass.


The second figure combines all the data from all passes for each measurement. The resistivity curves in this figure are for the deepest depth of investigation available from the tool(s) used.

The labels for each curve are derived from the name of the file in the database used for the figure.

The core data shown were collected from holes at the same site.


## Longest logging passes in Hole U1328C - IODP Expedition 311

| Dres                                               | bsf)      | Hole Size                         | Hole Size                    | Gamma Ray                                                 | Density                                                               | Porosity                  | Resistivity                         | Vp | Vs           | suoi           | Static FMS | Dynamic F     | FMS       |
|----------------------------------------------------|-----------|-----------------------------------|------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-------------------------------------|----|--------------|----------------|------------|---------------|-----------|
| 1328E cores<br>Recovery<br>1328C cores<br>Recovery | Depth (mt |                                   |                              |                                                           |                                                                       |                           |                                     | A  |              | station static | resistiv   | ve conductive | resistive |
| 132<br>Rec<br>1328<br>Rec                          | Dep a     | 0 Inches                          |                              | HNGS (up)           16         10         gAPI         90 | HLDS (up)           0         1.1         g/cm3         2.3         4 |                           |                                     |    |              |                | S W        | NN E S        | W N       |
| 1H                                                 | 60 -      | <ul> <li>bit size &gt;</li> </ul> | <ul> <li>bit size</li> </ul> |                                                           |                                                                       | core data<br>from density | SFLUshallow (up)<br>IMPHmedium (up) |    | ∀S1 (pass 1) |                |            |               |           |
| 2H                                                 | 70 -      |                                   |                              |                                                           |                                                                       |                           |                                     |    |              |                |            |               |           |
| ЗН                                                 | 80 -      |                                   |                              |                                                           |                                                                       |                           |                                     |    |              |                |            |               |           |
| 4X<br>10P 5P                                       | 90        |                                   |                              |                                                           |                                                                       |                           |                                     |    |              |                |            |               |           |
| 6H                                                 | 100       |                                   |                              |                                                           |                                                                       |                           |                                     |    |              |                |            |               | 1         |
| 7X                                                 | 110 -     |                                   |                              |                                                           |                                                                       |                           |                                     |    |              | *              |            |               |           |



## All logging passes in Hole U1328C - IODP Expedition 311

| res                                                | 'ery<br>(mbsf)       | Hole Size                 | Hole Size                                                                                                   | Gamma Ray                                                         | Density   | Porosity                  | Resistivity            | Vp                      | Vs                                                                        | Stati      | ic FMS    | Dynamic FMS | S Dep       |
|----------------------------------------------------|----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|---------------------------|------------------------|-------------------------|---------------------------------------------------------------------------|------------|-----------|-------------|-------------|
| 1328E cores<br>Recovery<br>1328C cores<br>Recovery | uvery<br>th (ml<br>- |                           |                                                                                                             | · · · · · · · · · · · · · · · · · · ·                             |           | 1                         |                        | I                       |                                                                           | conductive | resistive | conductive  | resistive 5 |
| 132(<br>Rec(<br>1326                               | Recov<br>Depth       | LCAL (HLDS)<br>0 Inches 2 | C1,C2 (FMS)<br>21 0 Inches 16                                                                               | HNGS (up)           6         0         gAPI         90         - |           | APS (up)<br>40 % 100      | IDPH-deep (up)0.5ohm.m | pass 1<br>5 1450 m/s 15 | VS2 (pass 1)         5           1900         200         m/s         700 | AS N E     | S W NN    | N E S V     | w N         |
| 1H                                                 | 60                   |                           | <pre></pre>                                                                                                 | SGT (pass 1)<br>SGT (pass 2)<br>SGT (repeat)                      | core data | core data<br>from density |                        | pass<br>repe            | ss 2∕⊀S1 (pass 1)                                                         |            |           |             | 60          |
| 2Н                                                 | 70                   |                           |                                                                                                             |                                                                   |           |                           |                        |                         |                                                                           |            | -         |             | 70          |
| ЗН                                                 | 80                   |                           |                                                                                                             |                                                                   |           |                           |                        |                         |                                                                           |            | -         |             | 80          |
| 4X<br>10P 5P                                       | 90                   |                           | $ \begin{array}{c} \cdot \\ \cdot $ |                                                                   |           |                           |                        |                         |                                                                           |            | -         |             | - 90        |
| . от эм<br><br>6Н                                  | 100                  |                           |                                                                                                             |                                                                   |           |                           |                        |                         |                                                                           |            |           |             | 100         |
| 7X                                                 | 110                  |                           |                                                                                                             |                                                                   |           |                           |                        |                         |                                                                           | *          |           |             | 110         |

